
JPF-Doop: Combining Concolic and Random Testing for
Java

[Extended Abstract]

Marko Dimjašević
School of Computing, University of Utah, USA

marko@cs.utah.edu

Zvonimir Rakamarić
School of Computing, University of Utah, USA

zvonimir@cs.utah.edu

ABSTRACT
Achieving high code coverage during software testing is im-
portant because it gives a measure of how thoroughly the
software has been tested. However, reaching high code cov-
erage in testing of real-world software is challenging due to
its size and complexity. Our paper addresses this challenge
by proposing an automatic multipronged approach. In par-
ticular, we propose an iterative algorithm for generating unit
tests that meaningfully combines concolic execution and ran-
dom testing. The algorithm aims to exploit the advantages
of both random testing and systematic software verification
techniques. We implemented the algorithm by integrating a
Java Pathfinder’s concolic execution engine and Randoop,
and dubbed the implementation JPF-Doop. Preliminary
experimental results show that JPF-Doop outperforms Ran-
doop in terms of code coverage.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools; D.2.4 [Software Engineering]: Software/Program
Verification

General Terms
Verification, Experimentation, Performance

Keywords
Concolic testing, Java Pathfinder, Random testing

1. INTRODUCTION
Software has become very complex nowadays, and is com-
prised of many libraries providing various underlying func-
tionalities. Software libraries are also large and contain hun-
dreds of thousands of lines of code. Because of their size and
complexity, it is hard and unaffordable to check the cor-
rectness of libraries manually. To address these challenges,
many automatic software testing tools and techniques exist
today (e.g., OCAT [9], Agitator [1], Evacon [8], Seeker [14],

DSD-Crasher [3]) and they are suc cessful to a certain de-
gree. These techniques often do unit testing, that is, they
test small parts of a big software library in isolation. Tools
like PEX [15] test one program method at a time, while
tools like Randoop [12] form random test drivers that are
sequences of library method calls. Quality of such testing is
often measured by various code coverage metrics. Because
such testing techniques either focus on a single method at a
time or just form random method call sequences, they often
fail to drive program execution to hard-to-reach sites in soft-
ware libraries, and as a result code coverage is suboptimal.

We have been working on addressing the aforementioned is-
sues by combining two automated techniques into a novel
algorithm. Our emphasis is on employing concolic (sym-
bolic + concrete) execution [13, 6] and feedback-directed
random testing [12] in software testing. To evaluate our al-
gorithm, we have implemented it by integrating jDART [5,
7], a Java Pathfinder’s component for concolic execution,
and Randoop, a random testing engine that is feedback-
directed. We dubbed the integration JPF-Doop, thereby
acknowledging both tools. Furthermore, we have used code
coverage metrics to compare JPF-Doop and Randoop on
several real-world complex Java libraries. The results show
that JPF-Doop typically outperforms Randoop on very com-
plex libraries.

2. ALGORITHM
First, we give an overview of both concolic execution and
feedback-directed random testing. At the end of the section,
we describe our iterative automatic algorithm that combines
these two techniques.

2.1 Concolic Execution
Concolic execution [13, 6] is a formal technique for executing
a program, in which symbolic [11] and concrete execution are
interleaved. The execution starts from the beginning of the
program with concrete input parameter values. The execu-
tion is directed by the concrete input values. As the exe-
cution proceeds, symbolic path constraints, which are logic
formulae, are generated for that particular execution. After
the execution terminates, a sub-formula of the path con-
straint that represents a conditional statement is negated,
and a new vector of concrete input values is generated using
a constraint solver. This new vector is used for another exe-
cution that will follow a different path, the path defined by
the path constraint with the negated conditional statement.
These steps are repeated until all possible symbolic path



Package Classes Methods Instructions Branches
Collections (org.apache.commons.collections) 422 3894 58470 6244
Primitives (org.apache.commons.collections.primitives) 231 1858 18490 1446
Codec (org.apache.commons.codec) 77 594 24884 1829
Math (org.apache.commons.math3) 845 6886 288250 18576
Net (org.apache.commons.net) 161 1637 32194 2734

Table 1: Packages from the Apache Commons library used in our experiments.

constraints (i.e., all possible paths) have been considered, or
until a given time limit is reached.

The main advantage of concolic over concrete execution is
that it significantly reduces a search space over input pa-
rameters, i.e., it can potentially avoid the search space ex-
plosion problem because one symbolic execution potentially
covers a multitude of concrete executions. On the other
hand, concolic execution also has an advantage over tradi-
tional symbolic execution because when a conditional cannot
be resolved symbolically, it is replaced by the concrete value
from the concrete execution. This replacement reduces the
abstraction level of the symbolic execution, but at the same
time allows for execution to continue where the symbolic
execution was not able to proceed on its own.

2.2 Feedback-Directed Random Testing
Instead of executing a program with concrete input values
repeatedly and in a completely random fashion when per-
forming testing, some information from earlier executions
can be used to direct new executions. In this way only unit
tests that execute all of their method calls can be gener-
ated, unlike unit tests that have totally random method
sequences that would have been generated otherwise, and
that would terminate their execution prematurely due to an
invalid method sequence prefix.

Randoop [12] uses information from previous executions to
direct further executions. The tool keeps two types of sets
of method invocation sequences — valid and invalid, i.e.,
those that do not violate any property, and those that do,
respectively. Both sets are empty in the beginning. The
most basic property is a program termination without any
error or exception thrown. Randoop starts by selecting a
public method and an existing method sequence from the
set of valid sequences, both selected at random. Then it
stitches the selected method call to the end of the method
sequence, and asserts that the new extended sequence is
neither in the valid nor in the invalid set. It executes the
new extended sequence, and checks for property violations.
If the new extended sequence does not violate any property,
the sequence is added to the valid set; it is added to the
invalid set otherwise. Randoop keeps on repeating extending
valid sequences until a time limit has been reached.

2.3 Iterative Algorithm
Figure 1 shows our proposed algorithm. The algorithm com-
bines concolic execution and feedback-directed random test-
ing into an iterative algorithm [4]. Random testing is used
for global search by generating random test drivers. Local
search is achieved by turning concrete input values in test
drivers into symbolic values and performing concolic execu-
tion on such modified drivers. Because of the global search,

Random values
generator

Random testing
-

 Randoop

Concolic execution
-

JDart

Code coverage
report

Refine unit
tests?

No Yes

Unit tests

Random input
values

Driving input
values

Figure 1: Our iterative algorithm for unit test gen-
eration. The algorithm combines concolic execution
and feedback-directed random testing.

testing is not getting stuck in one local area of the search
space. On the other hand, concolic execution enables local
exploration of the search space in the neighborhood of a test
driver.

The algorithm generates unit tests that are test drivers. The
test drivers navigate program execution through multiple
method calls to hard-to-reach code sites. The algorithm
iterates the unit test generation over several steps. The
first step of the algorithm consists of feedback-directed ran-
dom testing that generates test drivers for a software library.
The second step performs systematic concolic execution of
the appropriately modified test drivers generated in the first
step. The concrete values generated in the second step are
passed on to the third step, where they are used for another
run of random testing. Furthermore, these steps can be re-
peated in a loop to iteratively generate unit tests that reach
increasingly more points in the search space, as illustrated
in Figure 1. Code coverage is measured in the end.

3. IMPLEMENTATION AND EVALUATION
In order to evaluate the algorithm described in Section 2, we
implemented it in a tool named JPF-Doop. Furthermore,
we evaluated the algorithm by running experiments with
JPF-Doop against various real-world complex Java libraries.
At the end of this section we report our experimental results.

3.1 JPF-Doop
The implementation glues together jDART and Randoop,
and it is written in the Python programming language. This



Package/Tool
Randoop JPF-Doop

Instructions Branches Unit tests Instructions Branches Unit tests
Collections 50.94% ± 0.99% 38.96% ± 1.09% 20886.7 ± 3121.1 40.56% ± 2.51% 28.31% ± 2.67% 5344.4 ± 1827.7
Primitives 58.55% ± 0.05% 61.56% ± 0.07% 56900.1 ± 2192.4 58.13% ± 0.40% 61.20% ± 0.29% 45653.4 ± 1561.6
Codec 84.19% ± 0.17% 68.84% ± 0.38% 35755.1 ± 753.0 84.24% ± 0.28% 68.55% ± 0.57% 31340.9 ± 691.4
Math 15.57% ± 0.12% 2.14% ± 0.06% 77.5 ± 1.4 21.22% ± 5.87% 6.57% ± 5.15% 1651.6 ± 591.4
Net 31.41% ± 4.08% 14.06% ± 2.80% 1219.3 ± 358.4 42.05% ± 2.04% 23.41% ± 2.34% 13473.2 ± 5966.0

Table 2: Summary of our experimental results. Instruction (branch) coverage is given relative to the total
number of instructions (branches) in the package.

is carried out using Python scripts that set up an environ-
ment for Randoop and jDART, and facilitate interaction
of these two otherwise independent tools. In this environ-
ment Randoop and jDART make a loop of information flow,
where output that Randoop generates is used to form input
for jDART, and conversely, output that jDART generates
is used to form input for Randoop. Note that in the first
execution of Randoop there is no output from jDART to be
provided to Randoop; hence, completely random inputs are
used initially.

JPF-Doop first executes Randoop, and collects JUnit unit
tests that Randoop has generated. Randoop generally gen-
erates a lot of unit tests, so JPF-Doop makes a selection of a
small subset of unit tests at random. It proceeds by modify-
ing the selected unit tests in such a way that concrete input
parameter values are replaced by symbolic values, that is, by
symbolic variables. These modified unit tests are suitable for
concolic execution through exploration of all possible paths
such symbolic variables enable.

The next step JPF-Doop performs is invocation of jDART
on each modified unit test in order to carry out concolic ex-
ecution. jDART was adapted so that in the end of the con-
colic execution process it writes to a file all representative
concrete values of the symbolic variables generated during
the execution. JPF-Doop scrapes up these representative
concrete values and forms input for the next execution of
Randoop. The collected values are used as a pool of input
parameter values for all methods in all classes that Randoop
will test, thus enabling more valid unit tests to be generated.
By default, Randoop has a pool of standard input values
that it uses in the process of unit test generation, but this
pool is quite limited. The pool of concrete values generated
by jDART enables Randoop to reach much deeper program
states that would otherwise be virtually unreachable by ran-
dom testing.

3.2 Experimental Results
To evaluate the effectiveness of JPF-Doop, we selected five
package from the Apache Commons library, which are sum-
marized in Table 1. In total, the packages contain 422288
source code instructions and 30829 branches. The pack-
ages include container classes (Collections and Primitives),
complex computation classes (Codec and Math), and classes
that interact with the environment (Net).

In our experiments we measured two code coverage met-
rics — instruction coverage and branch coverage. Since
both Randoop and JPF-Doop are based on randomized al-

gorithms, we executed each tool 10 times on each of the
packages, with a time limit of five minutes per execution.
Table 2 summarizes our experimental results by providing
the averages and standard deviations for both instruction
and branch coverage. The results are calculated relative to
the total number of instructions (branches) in a package.
The summaries are given in form m ± σ, where m is the
average and σ is the standard deviation. The table also
includes the total number of generated unit tests for each
package.

As it can be seen from Table 2, in the given time limit Ran-
doop achieved about 10% higher instruction and branch cov-
erage than JPF-Doop for the Collections package. On the
other hand, JPF-Doop achieved about 10% higher instruc-
tion and branch coverage than Randoop for the Net package,
which includes interaction with a network environment. For
the Math package, which contains a lot of complex branch-
ing, improvement by JPF-Doop compared to Randoop is not
as significant, but it is noticeable. Note that JPF-Doop has
a large deviation there because in two executions it achieved
much higher coverage. There is no significant difference in
terms of coverages provided by Randoop and JPF-Doop for
the Primitives and Codec packages.

Unit tests generated by each execution of Randoop — in
Randoop itself or when Randoop is used as a part of the
JPF-Doop tool — are such that no unit test is subsumed
by another generated test. In other words, if unit test A is
a sub-sequence of instructions in unit test B, then unit test
A is discarded while unit test B is kept. From Table 2 it
can be concluded that the more unit tests a tool was able to
generate, the better instruction and branch coverage it was
able to provide.

4. CONCLUSIONS AND FUTURE WORK
Because the process of designing and writing software sys-
tems is inevitably erroneous, it is important to have autom-
atized ways of finding errors in such systems. Our work on
JPF-Doop addresses the issue of achieving high code cover-
age in software testing using automatic techniques, thus in-
creasing the likelihood of finding errors in software. We com-
pared our automatic iterative algorithm against feedback-
directed random testing, which has been shown to gener-
ally provide high code coverage, and demonstrated improve-
ments.

JPF-Doop is a work in progress. We plan to combine au-
tomata learning and concolic execution with the goal of fur-
ther improving automatic testing of software libraries. In



order to improve code coverage in testing of large-scale li-
braries, we will build on our current work. MACE [2] is
a tool that combines automata learning and concolic execu-
tion. Unlike MACE, our future work will focus on large-scale
libraries instead of implementations of network protocols,
and with the imperative of being completely automatic.

5. ACKNOWLEDGMENTS
This research was sponsored by the United States National
Aeronautics and Space Administration (NASA) under Prime
Contract No. NNA10DE60C and by the Google Summer of
Code 2013 program.

6. REFERENCES
[1] M. Boshernitsan, R. Doong, and A. Savoia. From

daikon to agitator: lessons and challenges in building
a commercial tool for developer testing. In Proceedings
of the 2006 international symposium on Software
testing and analysis, ISSTA ’06, page 169–180, New
York, NY, USA, 2006. ACM.

[2] C. Y. Cho, D. Babić, P. Poosankam, K. Z. Chen,
E. X. J. Wu, and D. Song. MACE:
model-inference-assisted concolic exploration for
protocol and vulnerability discovery. In USENIX
Security, volume 11, 2011.

[3] C. Csallner, Y. Smaragdakis, and T. Xie.
DSD-Crasher: a hybrid analysis tool for bug finding.
ACM Trans. Softw. Eng. Methodol., 17(2):8:1–8:37,
May 2008.

[4] P. Garg, F. Ivančić, G. Balakrishnan, N. Maeda, and
A. Gupta. Feedback-directed unit test generation for
C/C++ using concolic execution. In ICSE 2013, pages
132–141, 2013.

[5] D. Giannakopoulou, Z. Rakamarić, and V. Raman.
Symbolic learning of component interfaces. In A. Miné
and D. Schmidt, editors, Static Analysis, number 7460
in Lecture Notes in Computer Science, pages 248–264.
Springer Berlin Heidelberg, Jan. 2012.

[6] P. Godefroid, N. Klarlund, and K. Sen. DART:
directed automated random testing. In Proceedings of
the 2005 ACM SIGPLAN conference on Programming

language design and implementation, PLDI ’05, pages
213–223, New York, NY, USA, 2005. ACM.

[7] F. Howar, D. Giannakopoulou, and Z. Rakamarić.
Hybrid learning: Interface generation through static,
dynamic, and symbolic analysis. In Proceedings of the
International Symposium on Software Testing and
Analysis (ISSTA), pages 268–279. ACM, 2013.

[8] K. Inkumsah and T. Xie. Improving structural testing
of object-oriented programs via integrating
evolutionary testing and symbolic execution. In 23rd
IEEE/ACM International Conference on Automated
Software Engineering, 2008. ASE 2008, pages
297–306, Sept. 2008.

[9] H. Jaygarl, S. Kim, T. Xie, and C. K. Chang. OCAT:
object capture-based automated testing. In
Proceedings of the 19th international symposium on
Software testing and analysis, ISSTA ’10, page
159–170, New York, NY, USA, 2010. ACM.

[10] Java path finder.
http://babelfish.arc.nasa.gov/trac/jpf.

[11] J. C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385–394, July 1976.

[12] C. Pacheco, S. Lahiri, M. Ernst, and T. Ball.
Feedback-directed random test generation. In 29th
International Conference on Software Engineering,
2007. ICSE 2007, pages 75–84, May 2007.

[13] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C. In Proceedings of the 10th
European software engineering conference held jointly
with 13th ACM SIGSOFT international symposium on
Foundations of software engineering, ESEC/FSE-13,
pages 263–272, New York, NY, USA, 2005. ACM.

[14] S. Thummalapenta, T. Xie, N. Tillmann,
J. de Halleux, and Z. Su. Synthesizing method
sequences for high-coverage testing. SIGPLAN Not.,
46(10):189–206, Oct. 2011.

[15] N. Tillmann and J. d. Halleux. Pex–White box test
generation for .NET. In B. Beckert and R. Hähnle,
editors, Tests and Proofs, number 4966 in Lecture
Notes in Computer Science, pages 134–153. Springer
Berlin Heidelberg, Jan. 2008.


