
Automatic Malware Detection for Android

Abstract— With Android being the most widespread mobile
computing device platform today, malicious software (malware)
inevitably exists for it. While there have been various attempts,
with a certain degree of success, to provide a safe environment
for Android users by detecting malware in numerous ways,
none of them is able to detect malware that has yet unseen or
rare behavior. In this project we propose a completely automatic
framework that would detect a malware Android app with such
behavior. The framework uses a machine learning classification
algorithm and a testing technique. It operates on the Android
application repository level (e.g., Google Play) where it detects
a newly uploaded malware app automatically. Our results show
that, in a collection of more than 1800 Android applications,
the framework is able to correctly determine the application’s
behavior consistently and accurately.

I. INTRODUCTION

Android is an operating system primarily targeting mobile
devices such as smartphones and tablets. The operating
system has held a large share of the market for a few
years now, and its market share continues to grow. Just like
many other mobile device operating systems, Android’s key
selling point is a huge number of software applications — or
apps for short — that are developed by various parties. The
Internet connectivity on Android-based devices gives these
devices and accompanying apps almost unlimited ways for
interaction with other computer systems on the Internet.

These facts also make Android a very appealing target for
malicious software (malware). A user may install a malware
app on an Android device without knowing that the app is
malicious. Some examples of malicious actions are sending
unauthorized SMS messages, and sending sensitive private
information stored in the device to a remote server without
the user’s knowledge and permission. In order to mitigate
threats posed by a malware app, we propose a completely
automatic framework to detect malicious behavior.

The framework consists of two basic components: testing
and machine learning. The testing component is there to
thoroughly test each app in a controlled environment in order
to learn as much as possible about its behavior. The more
thorough testing of the app can be carried out, the better
feature vector capturing the true behavior of the app can
be constructed. The machine learning component serves the
purpose of extracting these feature vectors from Android
apps, and then using the feature vectors to learn parameters
of a classifier that discriminates benign from malicious apps.

Earlier research on malware [1] has shown that the soft-
ware application behavior can be observed through system
calls the application makes. Our framework monitors system
calls an Android app makes during the testing phase, and
constructs a system call dependency graph that represents

data flow between the system calls. The graph is then
converted to a feature vector of the app. Therefore, each
feature vector is a member of either the benign app class or
the malicious app class. Once the learning phase is finished,
the classifier can tell which class the feature vector of any
app — including of a yet unseen app — belongs to.

We evaluated our approach on 1824 Android apps in total,
out of which 656 are benign and 1168 are malicious. Results
from the evaluation show that our framework is very accurate
in predicting the behavior of an app with an 86.8% accuracy
on average.

II. RELATED WORK

Earlier research on malware detection focused on sig-
nature extraction from malware binary code. However, it
is easy to mitigate such efforts by obfuscating the code.
Android SDK [2] comes with ProGuard, a tool for Android
app code obfuscation. Google encourages Android app de-
velopers to use ProGuard to obfuscate their apps.

Recent research focuses on behavior detection [3], [4],
[5] by observing patterns in the way a software program
executes. Such approach is justified by the fact that the
behavior should not change at all or change very little after
code obfuscation. We build on that idea in order to be able
to distinguish benign from malicious Android apps.

One way to detect the program behavior is by tracing data
flow between system calls [1], [6]. Palahan et al. [7] do the
same with the addition of extracting statistically significant
behavior, but their results might be biased due to the way they
generate input data from benign programs. Reina et al. [8]
also use system calls to determine program behavior, but only
to detect differences in malware with and without stimuli
applied, not to tell apart benign from malicious behavior.
Unlike existing work, our approach provides a simplistic,
yet effective data flow model between system calls that
discriminates goodware from malware.

III. PRELIMINARIES AND PROBLEM DEFINITION

A. Problem Definition

Given a training set of Android apps with a label designat-
ing each app in the set as either benign or malicious, the goal
is to learn how to discriminate benign from malicious apps
in a new set that has no labels. Each app can be classified as
benign or malicious based on its behavior, i.e. actions the app
performs. In other words, the goal is to learn characteristics
of both benign and malicious behavior in order to be able to
detect a malicious app.
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Fig. 1. A weighted directed graph with three vertices and four edges. Edge
weights are written next to edges.

B. Graph Theory

In graph theory, graph G = (V,E) is a representation of
a set of objects V where these objects are all called vertices.
Some pairs of objects from V are connected by links —
also called edges — from a set E. An edge can have an
associated weight with it and the weight is written next to
an arch representing the edge. A graph with weighted edges
is called a weighted graph.
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Fig. 2. A complete digraph with four vertices.

A directed graph is a graph where edges have orientation,
i.e. the edges are directed. If there is a directed edge
from a vertex s1 to a vertex s2, then we denote the edge
by (s1, s2). An example of a weighted directed graph is
given in Figure 1. The graph is given with V = {s1, s2, s3}
and E = {(s1, s2), (s1, s3), (s2, s1), (s2, s3)}. A complete
digraph is a graph in which every ordered pair of distinct
vertices is connected by a directed edge. An example of a
complete digraph is given in Figure 2.

C. System Calls

A system call is a mechanism for a software program
to request a service from the operating system’s kernel.
Usually the program does not invoke system calls directly,
but rather indirectly through a software library from the
operating system. In the case of Android being the operating
system, the kernel is a Linux kernel where system calls [9]
form the fundamental interface between an Android app and
the kernel.

The Android operating system has more than 200 system
calls. We found a file in the Android source code that claims
to list all the system calls that are supported by the Bionic
C library. The library is a derivation of the BSD’s standard
C library code for Android. However, by running Android
apps in an early phase of this work we observed system calls
that are not on the list, i.e. the list is incomplete. Therefore,
we extended the list with system calls that we had detected
in the phase. The final list contains 209 system calls.

Formally, let S be a set of system call names containing
all the system calls from the final list, S = {s1, s2, . . . , sn},
where n = 209. We define a binary relation on system
calls sij , sik ∈ S , ij , ik ∈ {1 . . . n} as sij < sik if and

only if j < k for j, k ∈ N. The relation denotes that
system call sij chronologically happens before system call
sik . Then a system call sequence q of length m is a sequence
of instances of system calls q = (si1 , si2 , . . . , sim), where
si1 < si2 < · · · < sim . For a pair of system calls sij and
sik in sequence q, where sij < sik , we define the distance
between the calls as d(sij , sik) = ||sij − sik || = k − j.

We model data flows between a pair of system calls
by using the distance between the calls. Let wj,k denote
the weight of a directed edge (sj , sk) in a system call
dependency graph. A system call dependency graph (SDG)
is a complete digraph with V = S. Then wij ,ik for sequence
q is defined as:

wij ,ik =
∑

sij<sik

1

d(sij , sik)
(1)

where

sik < sij′ s.t. j′ = argmin
a
{sia = sij |k < a} (2)

Informally, the closer the pair is in sequence q, the more
it contributes to the edge weight in the graph. Instead of
actually observing a data flow between system calls, we use
the model of the flow. Our data flow model is based on a
naı̈ve observation that the closer a pair of system calls is in
sequence q, the more likely it is that there is a data flow
between the pair.

IV. APPROACH

In order to learn to discriminate benign from malicious
Android apps, we capture the behavior of an app during its
execution in the Android operating system. Our approach
consists of three phases. We automatically execute an app,
generate its feature vector, and use the vector in a supervised
learning technique. The approach is illustrated in Figure 3.

Willems et al. [1] showed that software program behavior
can be observed by tracking data flow between pairs of
system calls the program makes. We use that information
in modeling a data flow between system calls an Android
app makes during its execution in the Android operating
system. The data flow forms dependencies between system
call pairs and results in a system call dependency graph. Each
app execution has a corresponding system call dependency
graph. The graph is an encoding of the app’s behavior. We
transform the graph into a feature vector that we use in a
later training phase or for behavior detection of a yet unseen
app.

A. App Execution

To execute an app one could use a physical device, man-
ually install the app, start it, and manually interact with the
app. Such approach would be biased, would leave side effects
after every app execution, and would not scale to executing
more than 1800 apps. Therefore, a different approach is
needed. For that purpose, we use the Android software
development kit [2], which includes a set of development
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Fig. 3. There are three phases in our approach: App Execution, Feature Vector Generation, and Supervised Learning.

tools. In the kit are, among others, a handset emulator and
a debugger.

The emulator provides an ability to use any of the existing
Android operating system versions. It also has an ability
to emulate any of the several mobile hardware platforms
provided, giving an environment capable of emulating any
of the capabilities of a hardware platform, thus making
it realistic. This includes spoofing the sending of SMS
text messages to the emulator as well as sending Global
Positioning System (GPS) location updates. Another feature
of the emulator is snapshot taking of the operating system
and loading a previously taken snapshot. We heavily utilize
the feature, as described later.

The debugger is used for a communication between a host
machine and the emulator. It consists of client and server-side
programs for a two-way communication. Checking the status
of the emulator, installing an app, accessing a file system in
a running Android system, uninstalling an app, and fetching
files from the system is all done through the debugger.

There are two types of events we send to our execution
environment during an app’s execution. The first type of an
event is internal. Internal events are sent to an app itself, such
as screen clicks, touches, and gestures. The second type of
an event is external. External events are sent to the emulator
and include events that come from the interaction with the
external environment. They can be anything from a phone
call, text message, GPS location update, or a reading from
an accelerometer, gyroscope, and proximity sensor.

We start by installing an Android app in a pristine sandbox
environment. For that purpose we use a clean snapshot taken
immediately after a creation of an android virtual device
(AVD) that runs within the emulator. The snapshot is created
only once throughout the whole process. It is important that
each app is executed in a clean and controlled environment
provided by an emulated snapshot for two reasons. The first
one is so that there are no side effects from other app
executions. The second reason is that we can monitor the
execution.

Once an app is installed, we start the app with The
Monkey. The Monkey is a part of the kit that runs in the em-
ulator and generates pseudo-random streams of user events.

The events are internal and range from clicks, touches, and
gestures to system-level events. When the app is started, The
Monkey sends 1000 of events with a short pause period
before each event. In parallel to internal events, we send
external events too. In particular, malware from our data
set performs unauthorized activities related to SMS text
messages and location updates [10], so we focus on these
two external events. Every few seconds we send a text
message or location update to the emulator. The combination
of the internal and external events we use provides a realistic
interaction of an Android user with her’s phone or tablet and
the whole external environment.

As the app’s execution is driven by both internal and
external events, we record a sequence of system calls the app
sends to the system’s kernel. Because there are various types
of the events and because they are executed within different
contexts of the app, resulting system calls form a rich palette.
This richness enables us to distinguish each app from other
apps. Even though the sequence contains more information,
keeping only system call names and their chronological order
is sufficient. When all of the 1000 internal events have been
sent, we stop recording the sequence and uninstall the app.

B. Feature Vector Generation

After the app execution phase follows the feature vector
generation phase. Our data flow model ignores all parameters
a system call has and a possible return value the call outputs.
From an observed sequence of system calls for every app —
be it a benign or malicious app — during the execution phase
we extract system call names only in the chronological order.
The extracted names form a sequence q.

From sequence q we compute weight wj,k for every
system call pair (sj , sk) ∈ S2 as explained earlier. Weight
wj,k is the weight of an edge (sj , sk), i.e. of the directed edge
from vertex sj to vertex sk in the system call dependency
graph of an app. If there are j and k such that wj,k = 0, we
still considered edge (sj , sk) to exist, but with the weight of
0. That means that the graph is a complete digraph. Note that
each app execution has a single corresponding system call
dependency graph. Each app is executed only once, hence
each app has only one system call dependency graph.



We create the feature vector x of an app by taking edge
weights from the graph. For every directed edge (sj , sk)
there is a corresponding feature in x. Because the graph
is a complete digraph, it means that the graph has |S|2
edges, hence the dimensionality of x is |S|2 = 43681.
Therefore, x can be written as x = [x1x2 . . . x|S|2 ]

T. Each
element xl in x represents one feature. In particular, the
value of xl is wj,k, where 1 ≤ j, k ≤ |S|, k ≡ l (mod |S|),
j ≡ l − k + 1 (mod |S|). Therefore, values of j and k can
be uniquely determined for a particular value of l.

C. Supervised Learning

The final phase of our approach is an application of a
supervised learning technique on the feature vectors gen-
erated in the previous phase. We can apply the technique
because we have a set of well-known benign apps and a set of
well-known malicious apps. These sets are discussed in more
detail in Section V. In other words, we avail ourselves of the
information on what set each app belongs to in order to learn
the characteristics of both benign and malicious behavior.

A supervised learning technique that we use is support
vector machines (SVMs) [11]. There are numerous imple-
mentations of the SVMs technique. Our framework uses a
readily available free software library LIBSVM [12]. The
library is an essential component of the supervised learning
phase code implementation that we carried out in GNU
Octave, a MATLAB-like language.

In the learning phase of the technique we combine a subset
of goodware and a subset of malware apps, both subsets of
a varying size, into a learning set. We use the rest of our
data set as a testing set. More details about subset selection
are given in Section V.

V. EXPERIMENTAL RESULTS

Here we present an evaluation and experimental results of
our approach. We obtained Android apps from two sources.
Our evaluation consists of cross-validation, selection of train-
ing and testing set at random, and evaluate the performance
of both experiments.

In order to be able to evaluate our approach, we collected
both benign (goodware) and malicious (malware) Android
apps. We obtained 656 benign apps from F-Droid, a free
software-only online repository of Android apps [13]. Apps
in the F-Droid repository belong to different categories, such
as office, navigation, multimedia, internet, games, etc. We
assume these apps to be goodware because the F-Droid
community has a strict inclusion policy [13] of new apps
submitted by an external developer. A developer that wants
to upload a new app to the repository has to provide the
accompanying source code. The community compiles every
app from the source code themselves with the Android SDK.

Furthermore, all applications in the repository are free and
open source software. A prerequisite for software to be free
software is to make its source code available. The availability
of the source code decreases incentives for someone to
include malicious code. That is the case because thousands
of Android developers have access to the code and are able to

detect malicious aspects of it just by reading it. The F-Droid
community also makes every effort to ensure that everything
in the repository is safe to install and wherever possible,
the source code is checked for potential security or privacy
issues.

We obtained 1168 malicious apps from the Android
Malware Genome Project [10]. The project focuses on the
Android platform in order to systematize or characterize
existing Android malware. In particular, the project authors
have put more than one year of effort from August 2010
to October 2011 to collect about 1200 malware apps that
cover the majority of existing Android malware families.
They characterize them from various aspects, including their
installation methods, activation mechanisms as well as the
nature of carried malicious payloads. For example, these ma-
licious apps leverage root-level exploits to fully compromise
the Android security posing the highest level of threats to
users’ security and privacy, turn the compromised phones
into a botnet controlled through network or short messages,
have the built-in support of sending out background short
messages (to premium-rate numbers) or making phone calls
without user awareness.

To generate an SDG of an app, each malware and good-
ware binary was executed in a sandbox. The sandbox is a
clean snapshot in the Android emulator. A clean snapshot of
the Android operating system was loaded for the execution
of each application in order to have a pristine environment
and not to condition the app behavior in any way. Invoked
system calls by an app were traced by the strace tool, which
is available in the Android emulator. The binaries execution
consisted of the injection of one thousand of random events
that simulate a user interaction with an application as well
as of sending text messages and location updates to the
emulator.

As explained in detail in Section IV, by executing the
applications we obtain one SDG per application that is
converted into a feature vector. The vector is then fed into
a machine learning algorithm. Since we know the nature of
every app, in our approach we apply support vector ma-
chines, a supervised learning model with associated learning
algorithms that analyze data and recognize patterns. We
applied the SVMs technique with different kernels to classify
the data, which resulted in different outcomes.

To classify our data set, we use a linear and multiple
polynomial kernels. In particular, for the polynomial kernels
we used polynomials from the first to the fourth degree.

The first experiment that we performed consists of ran-
domly splitting the input data set into two groups. The first
group is the training set and it is composed of 90% of
apps. The second group is the testing set composed of the
remaining 10% of apps. The SVMs algorithm learns with
the training set and its associated labels and tests with the
testing set. In this case we performed 50 iterations of the
SVMs algorithm to compute the mean and standard deviation
of the computed accuracy.

In Table I we report the results. The best value of accuracy
is obtained with a polynomial kernel of the first degree.



Kernel Type Mean (%) Std. Dev. (%)
Linear 82.9 2.7

Polynomial 1st degree 86.8 2.1
Polynomial 2nd degree 83.9 3.3
Polynomial 3rd degree 80.6 2.9
Polynomial 4th degree 79.9 3.1

TABLE I
AVERAGE RESULTS FOR 50 ITERATIONS OF THE SVMS ALGORITHM

WITH A DATA SET SPLIT INTO 90% BEING A TRAINING SET AND 10% A

TESTING SET.

The difference between a polynomial kernel of the first
degree and a linear kernel is in a default leading factor.
The associated standard deviation is relatively small, thus
showing that in general the obtained results are consistent.

PREDICTED LABELS
GOODWARE MALWARE

REAL
LABELS

GOODWARE 48 18
MALWARE 14 103

TABLE II
CONFUSION MATRIX — LABELING PERFORMED BY THE ALGORITHM

FOR THE TESTING SET.

In order to better point out the performance of our ap-
proach, in Table II we show a confusion matrix, as commonly
done in machine learning. Each row of the matrix represents
the instances in an actual class, while each column represents
the instances in a predicted class. In this way it is easy to
see how the system is confusing the two classes. In our
case we can see how many false positive (the goodware
apps classified as malware apps, in the first row and second
column) and how many false negatives we have (the malware
apps classified as goodware apps, in the second row and first
column). The top-left to bottom-right diagonal represents
correctly classified data.

The second experiment that we performed is about select-
ing the training and testing set in a different way. For this
experiment we divided the data set into two equally sized
sets, each having 50% of malware and 50% of goodware. We
have two cases. The first one consists of using the training
set for learning and the testing set for testing. In the second
case we swapped the roles of the sets, so that we used the
testing set for training and the training set for testing. This
is cross-validation, mainly used when the goal is prediction
and when one wants to estimate how accurately a predictive
model will perform in practice.

Indeed, in Table III we have the results of the SVMs
algorithm for different kernels in both cases. Note that in
this case we also got the best results for the polynomial
kernel first degree and, as we can see, the values are within
the standard deviation estimated in the previous experiment.

Looking at the numbers, we can say that our approach
gives a very good accuracy of correctly identified malware
apps. On the other hand, we can see from the confusion

Kernel Type Case 1 Case 2
Linear 80.7 79.1

Polynomial 1st degree 84.7 86.7
Polynomial 2nd degree 82.2 80.9
Polynomial 3rd degree 79.7 77.7
Polynomial 4th degree 79.6 76.9

TABLE III
RESULTS OF THE SVMS ALGORITHM APPLYING A CROSS-VALIDATION.

matrix (in the first experiment) that we have a relatively high
number of false positives.

Our simple data flow model seems to give high accuracy in
discrimination between benign and malicious Android apps.
Existing work on Android malware detection makes no such
comparison. Zhou et al. [10] learn from malware samples
only obtaining a 79.6% accuracy of detected malware. Other
work, e.g. Enck et al. [14], detect security and privacy issues,
but their approach does not scale to a big number of apps.

VI. DISCUSSION AND CONCLUSION

In this paper, we proposed a framework for classifying
goodware and malware apps for the Android system using a
machine learning technique. Our framework exploits infor-
mation contained in the system call dependency graph of an
app execution. As discussed in Section V, we obtained good
results with our approach, correctly classifying 86.8% of
malware and goodware apps. However, our naı̈ve hypothesis
could be the main reason of a relatively high number of
false positives that we obtained. Another weakness in our
approach is random events that we send to an app. Such
events likely miss some real behavior of an app, which
results in a suboptimal sequence of the resulting system calls.
That further propagates to a suboptimal generation of feature
vectors that are used in the machine learning algorithm.

For these reasons, our future work is moving in the
direction of taking a more strict hypothesis in order to
refine the feature vector generation. For instance, performing
focused test during the app execution would help to produce
a more precise behavior of the program, which would result
in a richer sequence of system calls, and eventually in a
better system call dependency graph and a feature vector.
Moreover, usage of formal methods to find rarely run code
fragments could be another useful approach and better model
the application behavior.
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