
Function Totality:
Abstraction Tool in Programming

Marko Dimjašević, PhD

Lambda Days, Kraków, Poland, 21 February 2019

1

About Me

I From Croatia
I Formal Methods Engineer at Input Output Hong Kong
I Doctoral dissertation at University of Utah, USA on

automatic software testing
I Research on runtime verification at NASA
I Interested in:

I Software correctness via type systems
I Reducing software complexity via embedded domain

specific languages

2

In This Talk

Introduction

Exhaustive Pattern Matching

Termination

Productivity

Totality

Conclusions

3

Introduction

I Function totality = termination + productivity
I Key to: 1) reducing the number of runtime errors, and 2)

the ability to abstract
I Exhaustiveness important too

I Types have a central role
I Function definition via equations and pattern matching
I Code examples: Haskell, Idris

4

Introduction: Abstraction

“The purpose of abstraction is not to be vague, but
to create a new semantic level in which one can be
absolutely precise.” ∼ Edsger W. Dijkstra

5

Introduction: Software Components

I Function as a software component
I Use smaller components with known functionality to

compose bigger components
I Abstraction over details from smaller components

6

Introduction: Haskell, Idris

I Pure functional programming languages
I Programming like doing mathematics

I Haskell first appeared in 1990, Idris in 2009
I Idris strictly evaluates by default
I Haskell’s type system based on parametric polymorphism

I Algebraic data types
I Idris: dependent types

I General-purpose programming languages
I Idris also a theorem proving assistant

7

Introduction: The Role of Types

I Type: a set of values
data Vehicle = Car | Motorcycle
data Person = MkPerson Int Vehicle

I Function: maps a set to another set
getVehicle :: Person -> Vehicle
getVehicle (MkPerson age vehicle) = vehicle

I Types determine the kind of data that functions work with
I Types direct termination and productivity checking
I Compiler: performs automatic checks if expected and

actual types match

8

Exhaustive Pattern Matching

I Have we covered all cases of input values?
I Fetch the head of a list
head :: [a] -> a
head (x:_) = x

I Inexhaustive pattern matching: no empty list case
I head is a partial function

9

Exhaustive Pattern Matching: List Head Error

I Cover the whole function domain
head :: [a] -> a
head (x:_) = x
head [] = error "empty list"

I Runtime error when head [] called
I Problem: The type of the function is not appropriate

10

Exhaustive Pattern Matching: Different Codomain

Choose a better codomain

head :: [a] -> Maybe a
head (x:_) = Just x
head [] = Nothing

11

Exhaustive Pattern Matching: Vehicle Example

I Example: greet a vehicle owner
I If underage (18), they should have no vehicle
I If at least 18, they have a car or a motorcycle

I Three cases in total:
1. The person is underage and therefore cannot own a

vehicle
2. The person is at least 18 and has a car
3. The person is at least 18 and has a motorcycle

12

Exhaustive Pattern Matching: Haskell

data Vehicle = Car | Motorcycle
data Person = MkPerson Int Vehicle

limit = 18

greet :: Person -> String
greet (MkPerson age _) | age < limit =

"Be patient, you’re not old enough to drive!"
greet (MkPerson age Car) | age >= limit =

"Hello, you car driver!"
greet (MkPerson age Motorcycle) | age >= limit =

"Hello, you motorcycle driver!"

13

Exhaustive Pattern Matching: GHC Warning

$ ghc -Wincomplete-patterns Greet.hs
[1 of 1] Compiling Greet (Greet.hs, Greet.o)

Greet.hs:7:1: warning: [-Wincomplete-patterns]
Pattern match(es) are non-exhaustive
In an equation for ‘greet’:

Patterns not matched:
(MkPerson _ Car)
(MkPerson _ Motorcycle)

|
7 | greet (MkPerson age _) | age < limit =

| ^^...

14

Exhaustive Pattern Matching: Idris (1)
data Vehicle = Car | Motorcycle

possiblyVehicle : Nat → Type
possiblyVehicle n = if n < 18 then () else Vehicle

data Person : Type where
MkPerson : (age : Nat) → (v : possiblyVehicle age) →

Person

p1 : Person
p1 = MkPerson 11 ()

-- It will not type -check
-- p2 : Person
-- p2 = MkPerson 16 Car

p3 : Person
p3 = MkPerson 24 Motorcycle

15

Exhaustive Pattern Matching: Idris (2)
data Vehicle = Car | Motorcycle

possiblyVehicle : Nat → Type
possiblyVehicle n = if n < 18 then () else Vehicle

data Person : Type where
MkPerson : (age : Nat) → (v : possiblyVehicle age) →

Person

greet : Person → String
greet (MkPerson age v) with (age < 18)

greet (MkPerson _ ()) | True =
"Be patient , you 're not old enough to drive!"

greet (MkPerson _ Car) | False =
"Hello , you car driver !"

greet (MkPerson _ Motorcycle) | False =
"Hello , you motorcycle driver !"

16

Exhaustive Pattern Matching: Idris Check

I The Idris compiler checks for exhaustiveness
:total greet
Greet.greet is Total

I The greet function exhaustively covers all possible
shapes and values of type Person

17

Termination

I Will the program eventually finish running given an input?

length :: [a] -> Word
length [] = 0
length (x : xs) = 1 + length xs

18

Termination: Loop

I Will this program terminate? (taken from the paper Total
Functional Programming)
loop :: Int -> Int
loop n = 1 + loop n

19

Termination: Mathematical Reasoning

I Mathematical reasoning in functional programming
loop :: Int -> Int
loop n = 1 + loop n

I Substitute 0 for n:
loop 0 = 1 + loop 0

I Assume x - x = 0 and subtract loop 0 from both sides
to get:
0 = 1

I What went wrong?

20

Termination: Bottom Value

I We went from the program
loop :: Int -> Int
loop n = 1 + loop n
to
0 = 1

I n is not only an integer, but also a bottom (undefined
integer)

I An infinite loop in programming corresponds to falsity in
logic

I loop is a partial function, hence not suitable for
equational reasoning

21

Termination: Halting Problem

I The Halting Problem in computability theory
I Given a program description and an input, will the

program finish with its execution?
I In 1936 Alan Turing proved there is no general algorithm

that addresses this question
I How can Idris check for termination?

I Restriction to a function class for which it is doable
(adapt the style of program writing)

22

Termination: Recap

I Inexhaustive pattern matching and infinite loops
head :: [a] -> a
head (x:_) = x

loop :: Int -> Int
loop n = 1 + loop n

I To rely on such functions calls for trouble: dreadful bug
searching and fixing

I A terminating function:
1. Is defined for all well-typed inputs, and
2. Converges on a base case in the recursive call.

23

Productivity

I What about programs that should not terminate, e.g., an
operating system or a web server?

I Such programs produce data for a given input and keep
on doing that in a loop

I Productivity: giving a non-empty finite prefix of an
infinite result in finite time

24

Productivity: Infinite Looping (1)

I An adapted example from the book Type-driven
Development with Idris

I An ever-running process printing to the console
I How to check it is productive?

25

Productivity: Infinite Looping (2)

data InfIO : Type where
Do : IO a → (a → Inf InfIO) → InfIO

infProg : InfIO
infProg = Do (putStrLn "Lambda ") (λ_ ⇒ infProg)

partial
run ' : InfIO → IO ()
run ' (Do c f) = do res ← c

run ' (f res)

26

Productivity: Fuel (1)

I Termination checking for indefinitely running programs:
fuel consumption as a guaranty of getting to a final state
with no fuel

I Infinite fuel tank
I Pushing infinite execution out of a critical program part

27

Productivity: Fuel (2)

%default total

data Fuel = Dry | More (Lazy Fuel)

twoDrops : Fuel
twoDrops = More (More Dry)

partial
forever : Fuel
forever = More forever

28

Productivity: Fuel (3)

data InfIO : Type where
Do : IO a → (a → Inf InfIO) → InfIO

infProg : InfIO
infProg = Do (putStrLn "Lambda ") (λ_ ⇒ infProg)

run : Fuel → InfIO → IO ()
run (More fuel) (Do c f) = do res ← c

run fuel (f res)
run Dry _ = putStrLn "No more fuel"

29

Productivity: Fuel (4)

When executed with two drops of fuel:
:exec run twoDrops infProg
Lambda
Lambda
No more fuel

When executed with infinite fuel:
:exec run forever infProg
Lambda
Lambda
Lambda
Lambda
Lambda
...

30

Productivity: Fuel (5)

The run function is total:
:total run
RunFuel.run is Total

31

Totality

I Function totality comprises termination and productivity
I A total function:

1. Terminates its execution for a given well-typed data
input, or

2. Produces a non-empty finite prefix of the result of the
correct type in finite time

32

Totality: Program Parts

I Programs can be split into a finite and an infinite part:
1. The finite part always has to be total
2. The infinite part has to be as productive as possible

I The possibility of runtime error only in the partial part
of the infinite part

33

Totality: Recap

I Totality: termination and productivity
I Safe mathematical reasoning about total functions
I A link to the Curry-Howard isomorphism

I If I had a partial proof, how would I reuse it in more
complex proofs?

34

Literature

I Paper by David Turner: Total Functional Programming
I Aaron Stump: Verified Functional Programming in Agda,

chapter 9 (termination proofs)
I Edwin Brady: Type-driven Development with Idris
I Daniel Friedman, David Christiansen: The Little Typer

35

Conclusions

I Composing smaller functions into bigger functions
I Totality: terminating and productive functions

I Supports abstraction
I Define functions over the whole domain:

I Exhaustive pattern matching
I Fix the domain or the codomain

I Compiler as a verification tool

I © Marko Dimjašević, 2019. CC-BY-SA 4.0
I https://dimjasevic.net/marko

36

https://dimjasevic.net/marko

	Introduction
	Exhaustive Pattern Matching
	Termination
	Productivity
	Totality
	Conclusions

